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NEW THEORY FOR THICK, COMPOSITE-MATERIAL RINGS*

**

C.W. Bert
School of Aerospace, MechanicaZ and Iluclear Engineerin'

The University of Oklahoma, Norman, Oklahoma

ABSTRACT

A new theory for the in-plane elastic behavior of shear-deformable ring-

type structures, i.e., curved beams and complete rings, is presented. This

theory falls between Bresse-Timoshenko-type ring theory, in which the shear

deformation is assumed to be distributed uniformly through the thickness and

corrected by a shear correction factor determined in an ad hoc fashion, and

two- or three-dimensional elasticity theory. As an example, the theory is

applied to the problem of a diametrically loaded thick ring. The predicted

normal-stress distribution is in excellent agreement with published results

in the literature obtained by photoelastic measurements.T Accession For

Ct I

Dict " .

*This paper was an invited paper presented at the 17th Israel Conference
on Mechanical Engineering, Tel Aviv University, July 12-14, 1983.
** The Benjamin H. Perkinson Professor of Engineering and Goerge L. Cross

Research Professor.
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NOTATION

A - stretching stiffness y - circumferential position

a - cross-sectional area of ring on middle surface

B,B:C - bending-stretching coupling z - outward normal position

stiffnesses coordinate

D,F - bending stiffnesses - linear and quadratic

E - Young's modulus coefficients in expansion

G - shear modulus of V in powers of z

h - total in-plane depth of - shear strain

ring Y - transverse shear strain

M - bending moment at z = 0

N - circumferential force C - normal strain

P - concentrated force 0 - circumferential normal

Pi - internal pressure strain at z =0

Q - shear force - circumferential position

R - mean radius of ring angle

S - shear stiffness - bending curvature change

V - circumferential displacement - Poisson's ratio

v - circumferential displacement

of middle surface a - normal stress

W - radial displacement - shear stress

w - radial displacement of - cubic coefficient in expansion

middle surface of V in powers of z

_,Y /
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1. INTRODUCTION

Ring-type structures are an important class of structural elements used

as flywheel rims, shell rims, load-calibration rings, elements of transducers,

and as circumferential reinforcements for cylindrical shells. Furthermore,

the theory of rings can be considered to be a degenerate version of shell

theory.

The theory of in-plane vibration of relatively thick circular rings,

including transverse shear deformation and rotatory inertia, dates back to

the work of Bresse (1859), which predates the classical thin-ring theory of

Hoppe (1871) as well as Timoshenko's shear-deformable beam theory (1921).

A discussion of some of the large body of ensuing literature was provided by

Haines (1974). The pioneering shell theory due to Hildebrand et al. (1949)

and the work of Benzley et al. (1973) should also be mentioned. An alter-

native is to use the two- or three-dimensional theory of elasticity, such as

used by Federhofer (1935) and Endo (1972), respectively.

It has long been known that the Bresse-Timoshenko theory suffers from a

serious flaw: it is based on the assumption of a uniform distribution of .

transverse shear strain through the thickness, whereas the actual distribution

is that of a distorted parabola. Numerous ad hcc approaches, both static and

dynamic, have been suggested for determining the so-called shear correction

factor to account for the differences between these stress and strain distri-

butions; see, for instance, Mindlin and Deresiewicz (1954) and Cowper (1966).

Only recently was an entirely new theory proposed to allow a more real-

istic shear strain distribution; it is due to Levinson (1981). This theory

and its companion plate theory (Levinson, 1980),as well as analogous earlier

theories by Ambartsumyan (1970), Reissner (1975), and Schmidt (1977), were



4

derived for macroscopically homogeneous material only.

It is well known that transverse shear deformation plays an even more

important role in structures composed of fiber-reinforced composite materials

than in those of homogeneous material; see, for example, Tarnopol'skii et al.

(1965). Dynamic and static derivations of the shear correction factor for a

laminate were presented by Yang et al. (1966) and by Whitney (1973) and Bert

(1973). The latter work was recently extended to the case of beams laminated

of bimodular materials (different elastic properties in tension and compres-

sion) by Bert and Gordaninejad (1983).

Levinson's theory of plates was recently extended to laminated plates by

Murthy (1981); see also Bert (1983). However, the Levinson theory cannot be

extended to ring-type members and still satisfy the requirements of zero shear

strain at the intrados and extrados of the ring. This is the motivation for

the present theory, in which these zero-shear-strain requirements are satisfied.

Most of the theories of shear-deformable ring mechanics (including Bresse,

1859 and Haines, 1974) are what might be -termed first-approximation theories,

analogous to Love's first-approximation shell theory (see Kraus, 1967), in

which it is assumed in the strain-displacement relations that z/R << 1. This

is analogous to Winkler-Bach curved beam theory (see Seely and Smith, 1952)

but in contrast to the shear-deformable ring theory due to Kirkhope (1977).

2. HYPOTHESES

In the present work, the following simplifying assumptions are made.

1. As in other ring theories, thickness normal strain is neglected,

i.e., ez = 0.

2. The shear strain distribution is nonlinear in such a way that the

d
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shear strain vanishes at the intrados and extrados of the ring. This is in

contrast to all other ring or curved-beam theories (except elasticity theory)

known to the present investigator, and allows accurate predictions without

the use of a shear correction factor.

3. The theory is a first-approximation one, i.e., z/R << 1. This means

that the theory should be most applicable to thin rings made of highly shear-

deformable material (such as fiber-reinforced composite material).

4. Displacements are assumed to be sufficiently small that linear strain-

displacement relations are adequate.

5. The ring cross section may be homogeneous or arbitrarily laminated of

linear cylindrically orthotropic elastic material (see Fig. 1).

3. THEORETICAL DERIVATION

The following displacement field is used as the point of departure

(Fig. 1):

v(,z) = v(;:) + z(1:) + z2 _() + zl:(.-) (1)
W(e,z) = w(o)

The expression for circumferential displacement V contains the same terms used

in Levinson's beam theory (1981) plus middle-surface displacement v to account

for bending-stretching coupling and the quadratic term, which is now necessary.

The expression for radial deflection W is consistent with hypothesis 1.

It is shown in the Appendix that it is not possible to use the displace-

ment field (1) in conjunction with the exact linear strain-displacement rela-

tions and still satisfy hypothesis 2. Thus, consistent with hypotheses 3 and

4, the following first-approximation strain-displacement relations are used.

c e Ey (W/R) + ; V, z (2)

Yez = Yyz W ,y - (V/R) + Vz

. d
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where ( ) = a( )/3y, etc. Substituting the displacement field (1) into

(2), one obtains the strain field

y= [v y+ (w/R)] + z y+ Z'3 + z',y Ez = 0

y= [w9y - (v/R)..c] + [2B - (a/R)]z + [3:- (2/R)]z2 - ( /R)z3

The material stress-strain relations for each layer in the laminate, in

view of hypothesis 5, are

;= E.y ; Ty z = G-, yz  (4)

In view of the third of (3) and the second of (4), enforcement of vanish-

ing shear strains at the extrados and intrados, i.e., 7y(y' + h) 0, requires

that

[w - (v/R) + L] + [3:.- (,:/R)](h/2) = 0
(5)

[2-- (,:,/R)] - (:IR)(hl2)-=0

Consistent with hypothesis 3, one can neglect (l/8)(h/R)2 compared with

unity. Within this approximation, it can be shown that equations (5) are

satisfied if one sets

= (a/2R) - (l/6R)[w - (v/R) +
(6)

= - (4/3h2)[W - (v/R) + a]

Thus, the final expressions for the non-zero strain distributions can be

written as

S[V,y + (w/R)] + + (z2/6R)[2ay -W yy + (v /R)]

-(4/3)(z 3/h2 )(w - (v /R) + ] (7)

,yy ,y '
2 23 2

Yyz El - (1/3)(z/R) - 4(z/h) +(1/6)(z/R) + (4/3)(z 3/Rh2))

,[w~ - (v/R) + a] - (a/2)(z/R)
2

,3,
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The nonlinearity of the strain distributions in (7) is readily apparent.

As is customary, the stress resultants and stress couple are defined as

(see Fig. 1)

(N,M) f (lz),u da ; Q T Tyz da (8)
a a

From the theory of elasticity in plane polar coordinates (R+z,,,), the

circumferential and radial equations of equilibrium for any arbitrary point

within the ring are, in the absence of body forces,

+ ( + 2t.Z)/(R+z) = 0

(9)
+, +(R+z)c + I - a = 0z,> r,z "r

Multiplying the first of (9) by (R+z), integrating with respect to z,

using relations (6), and noting that T vanishes at the intrados and extrados,

one has

N + (Q/R) = 0 (10)'Y !
Similarly, multiplying the first of (9) by (R+z)z and integrating with

respect to z, one obtains

M -Q=0 (11), Y

Finally, integrating the second of (9) with respect to z, one finds

Qy - (N/R) + pi = 0 (12)

Substituting the strains (7) into the stress-strain relations (4) and

thence into the generalized force definitions (8), one obtains the ring con-

stitutive relations as follows

N} A ']{v,y + (w/R) F (w .+ (13)

M 8 Dy F y R +  y'Y ,!
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Q = S[w - (v/R) + al - S', (14)

where the ring stiffnesses are defined as

(AB) f (l,z)E da ; (C,F) r j (1,z)[(z 2/6R) + (4/3h2)z3]E da

a a

(B:D) f (z,z )[1 + (z/2R)JE da ; S' 1(112)Jf (z/R) G da (5

a a

S f [ - (z/3R) - 4(z/h)2 + (I/6)(z/R)2 + (4/3)(z 3/Rh2 )]G da

a

Equations (13) and (14) can be written in more compact form as follows:

{I} = A  
:{o} {} Y (16)

Q = S - S' (17)

Substituting the ring constitutive relations (13) and (14) into the

equilibrium equations (10)-(12), one obtains the following displacement

equations of equilibrium in matrix-differential operator form:

L1 L12  L 1  { w/R0

L21  L22  L2 3  2L 0

L31 L32 L3 3 J w/R " (1

Here,

L11  (AR + C)dy2 2(SR) L (B' -C)d + (SYR) (S'R)

L - CRdy 3 + (A+S)d L2 (BR+F)dy2 + S

(D- F)dy2 S + S' L23 - FRdy 3 + (B - SR)d
22y 23y y

I 
I

. . . ... - - ,. .. .. . .
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L31  - y 32 [S - S- (B'/R) + (C/R)]dy

L (SR + C)d 2 - (A/R) dy d( )/dy (19)

33 y

4. APPLICATION AND COMPARISON WITH EXPERIMENTAL RESULTS

As an application of the new theory, a diametrically loaded thick circu-

lar ring (see Fig. 2) is considered. Application of statics to the free-body

diagram shown in Fig. 3 yields the following expressions for the generalized

forces:

N - P cos , - P sin e , M= -M +PR cos e (20)

These expressions satisfy the equilibrium equations of the present theory,

equations (10)-(12).

Since the problem is statically indeterminate to the first degree, an

additional equation relation to deformation is required. From the ring con-

stitutive relation, equation (13), one has

= [AM - BN + (AF - BC)(Q /S)]/[AD - BB' - (AF - BC)(S'/S)] (21)

Integrating symbolically, one obtains

e

=() =f 'y dB + a(0) (22)
0

Inserting the appropriate quantities into equation (22) and enforcing

the symmetric conditions

ai=/2) - 0 (23)

one finds the following expression for the statically indeterminate bending

moment:

M = (2/k)[R+(B/A) - (1I/ARS)(AF-BC)]P (24)
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It is noted that in the case of a homogeneous beam in thin ring theory

(S -), equation (24) reduces to the classical value, M, (2/7)PR.

The author was not able to locate any experimental stress or deflection

data for a circumferentially-wound, fiber-reinforced composite-material ring,

which would be the most stringent test for the new theory. Hbwever, some

photoelastically obtained stress data were reported by Srinath and Acharya

(1954) for a very thick ring of homogeneous, isotropic material. Specific

data for their ring are listed in Table 1.

For the present special case of a homogeneous, isotropic ring, the ring

stiffness parameters can be expressed as follows:

A/E = h , B/E = 0 , B'/E = h3/24R , C/E = B'/3E , D/E = h3/12

3 2 (25)
F/E = D/5E S/E (1/3)h/(l +v) S'/E = (1/48)(h /R )/(1 +v)

It was necessary to normalize the stiffnesses with respect to Young's modulus

(E), since the actual value of the Young's modulus was not reported by Srinath

and Acharya. The resulting expressions for the circumferential normal stress

distribution are given below.

For the actual value of shear stiffness (S):

= - 525 + 16,015 z+ 6,548 z2 + 13,195 z3  (26)

Here, z and ay have units of inches and psi, respectively.

Neglecting transverse shear flexibility (S -)

= -517 + 16,104 z + 6,315 z- 10,477 z3  (27)

It is noted that inclusion of transverse shear deformation results in a

more nonlinear stress distribution. A comparison of these predicted results

with the reported experimental values is presented in Table 2. Certainly
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the results for the new theory (actual S) are encouraging. Also presented

is the prediction of Winkler-Bach ring theory, for which the bending stress

is given by

b= (M/he)(e + z)/(R + z) (28)

where e is the distance from the centroid of the cross section to the

neutral surface and is given by

e = R - h[In I + (I/2)(h/R)]  (29)

In the present case, at the horizontal cross section (K.=0), the bending

moment is given by

M = P(R-e) - M l = [I - (2/-)]P(R-e) (30)

The total normal stress at ..=0 is given by

= - (P/h) + -b (31)

In the numerical example under consideration, equation (31) becomes

= - 437 + 18,835 (0.0099356 + z)/(1.1875 + 2) (32)

The numerical values are presented in the next to the last column in Table 2.

There is not a great deal of difference among all four stress distri-

butions listed in Table 2. However, it is emphasizea that the material is

isotropic with . : 0.35, thus, the ratio of shear modulus to elastic modulus

(G/E) is 0.3704. In contrast, for graphite/epoxy (T300/5208), this ratio

is only 0.04368, according to the carefully correlated experimental results

due to Knight (1982). Thus, it was decided to repeat the calculation of

the present theory for a hypothetical ring constructed of hoop-wound
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graphite/epoxy and having the same geometry and loading as previously dis-

cussed. The resulting equation, instead of equation (26), is

=-587 + 15,204 z + 8,163 z2+ 119,000 z3(33)

This calculation was based upon the following material properties

reported by Knight (1982):

Hoop-direction elastic modulus 20.1 x 106 psi

6
Transverse shear modulus 0.378 x 10 psi

The resulting stress distributions are plotted in Fig. 4, where it

is noted that the low shear modulus of the graphite/epoxy causes much

higher maximum stresses than are present in the isotropic ring.
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5. DISCUSSION

In the development of the equilibrium equations, (10)-(12), the inte-

gration method believed to have been originated by Yang (1965) was used.

However, this approach leads to equilibrium equations which are only approxi-

mate for the present case, although they are exact for the cases of the clas-

sical thin and shear deformable theories. More accurate, yet much more com-

plicated, equilibrium equations can be obtained by application of the princi-

ple of virtual work, such as used by Kraus (1967) for thin-shell theory. How-

ever, in the present case, this approach gives rise to five more generalized

forces than the theory presented here. They are of the form

h/2

y(Z--y, Z,;y, z-yz , Z- yz, Z yz) dz

-h/2

These are analogous to the higher-order generalized forces obtained by Tiffen

and Lowe (1963) and Lo et al. (1977a,b) in their higher-order plate theories.

See also the treatise by Librescu (1975). The present approximation is more

in keeping with Levinson's plate and beam theories (1980, 1981). Thus, it

may be more appropriate to classify the present theory as a more accurate

simplified theory rather than as a true higher-order theory. It should be

mentioned that Langhaar (1965) pointed out that higher-approximation theories

are not necessarily more accurate. He cited the case of a curved cantilever

beam for which Love's first-approximation theory (same as Winkler-Bach curved-

beam theory) yielded the statically correct force quantities while his second-

approximation theory gave results which violated static equilibrium grossly.

rd
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6. CONCLUSIONS

The new ring theory presented here has the following advantages:

1. In contrast to other shear-deformable ring theories it does not

require separate ad hoc determination of a shear correction factor.

2. In contrast to other first-approximation ring theories, it allows for

a nonlinear distribution of circumferential displacerent through the thickness.

3. Relative to two- or three-dimensional elasticity theory and to higher-

order ring theory, it is much simpler and much more amenable to engineering

calculations.
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APPENDIX

The exact linear strain-displacement relations in shell coordinates are

(W + V )/(R + z) z wA-i

- V. + (W - V)/(R + z)

Using the displacement field of equations (1) in equations (A-I), one

obtains

(R+z)'l(w + v + z; + z2  + z3:

0 ; (R+z) (w -v-z-z -z )+ +2z,.+3z (A-2)

Enforcing ( , h) 0 thus requires that the following four equations

be satisfied:

w -V - (021 , : 0

(A-3)
21LS (h /4) = 0 0 + (3h /4). = 0

It is obvious that all four of these cannot be satisfied except in the

trivial case, . 0 and w =v.

• I

I6
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Table I. Conditions for experiments of Srinath
and Acharya (19540

Dimensional Data Loading and Material Data

Ring depth h = 0.375 in. Loading P 164 lb/in.

Ring mean radius R = 1.1875 in.

Ratio h/R = 0.3158 Poisson's ratio = 0.35*

Estimated

i

Table 2. Numerical results for distribution of circumferential
normal stress (psi)

Present Theory Winkler-Bach

z/h S-+w Actual S Theory Measured

-0.500 -3,246 -3,371 -3,781 -3,550

-0.233 -1,871 -1,882 -1,765 -1,720

0 -517 -525 -279 Not reported

0.042 -?64 -273 -37 -70

0.291 1,301 1,322 1,292 1,300

0.500 2,656 2,809 2,268 2,350
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M~dM V rV%, J, I

Q +dQ /

// x N

Fig.l . Coordinates, displacements, forces and
moments acting on a differential element
of a ring.
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Fig. 2. A diametrically loaded thick circular ring.
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Fig. 3. Free-body diagram of ring segment.
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3
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S2
L/
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p / 1 I

-0.2 -0.1 0 0.1 0.2

/ POSITION MEASURED OUTWARD
FROM CENTROID, IN.

/

ISOTROPIC -2
(1. 0 35)

EQ. (26)

GRAPHITE/EPOXY -3
EQ. (33) / -3/

-4

Fig. 4. Normal-stress distributions for isotropic and
graphite/epoxy rings loaded in diametral compression.
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